Incremental Graph Partitioning Based on MapReduce

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Incremental Graph Partitioning

Partitioning graphs into equally large groups of nodes while minimizing the number of edges between di erent groups is an extremely important problem in parallel computing. For instance, e ciently parallelizing several scienti c and engineering applications requires the partitioning of data or tasks among processors such that the computational load on each node is roughly the same, while commun...

متن کامل

Sampling with incremental mapreduce

The goal of this paper is to increase the computation speed of MapReduce jobs by reducing the accuracy of the result. Often, the timely processing is more important than the precision of the result. Hadoop has no built-in functionality for such an approximation technique, so the user has to implement sampling techniques manually. We introduce an automatic system for computing arithmetic approxi...

متن کامل

Incremental MapReduce Computations

1 0.1 Abstract Distributed processing of large data sets is an area that received much attention from researchers and practitioners over the last few years. In this context, several proposals exist that leverage the observation that data sets evolve over time, and as such there is often a substantial overlap between the input to consecutive runs of a data processing job. This allows the program...

متن کامل

Graph Partitioning Based on Link Distributions

Existing graph partitioning approaches are mainly based on optimizing edge cuts and do not take the distribution of edge weights (link distribution) into consideration. In this paper, we propose a general model to partition graphs based on link distributions. This model formulates graph partitioning under a certain distribution assumption as approximating the graph affinity matrix under the cor...

متن کامل

iMapReduce: Incremental Iterative MapReduce

Cloud intelligence applications often perform iterative computations (e.g., PageRank) on constantly changing data sets (e.g., Web graph). While previous studies extend MapReduce for efficient iterative computations, it is too expensive to perform an entirely new large-scale MapReduce iterative job to timely accommodate new changes to the underlying data sets. In this paper, we propose iMapReduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: DEStech Transactions on Computer Science and Engineering

سال: 2017

ISSN: 2475-8841

DOI: 10.12783/dtcse/mcsse2016/10958